米氏方程
米氏方程
v=Vmax×[S]/(Km+[S]),这个方程称为Michaelis-Menten方程,是在假定存在一个稳态反应条件下推导出来的,其中 Km 值称为米氏常数,Vmax是酶被底物饱和时的反应速度,[S]为底物浓度。由此可见Km值的物理意义为反应速度(v)达到1/2Vmax时的底物浓度(即Km=[S]),单位一般为mol/L,只由酶的性质决定,而与酶的浓度无关。可用Km的值鉴别不同的酶。当底物浓度非常大时,反应速度接近于一个恒定值。在曲线的这个区域,酶几乎被底物饱和,反应相对于底物S是个零级反应。就是说再增加底物对反应速度没有什么影响。反应速度逐渐趋近的恒定值称为最大反应速度Vmax。对于给定酶量的Vmax可以定义为处于饱和底物浓度的起始反应速度n。对于反应曲线的这个假一级反应区的速度方程可写成一种等价形式:
n(饱和时)=Vmax=k[E][S]0=k[E]total=k cat[ES]
速度常数k等于催化常数k cat,k cat是ES转化为游离的E和产物的速度常数。饱和时,所有的E都是以ES存在。方程(3.2)中还有另一个简单的关系式:Vmax=k cat [E]total。从中得出:k cat=Vmax / [E]total。k cat的单位是s-1。催化常数可以衡量一个酶促反应的快慢。
米氏常数Km是酶促反应速度n为最大酶促反应速度值一半时的底物浓度。这可通过用[S]取代米氏方程中的Km证明,通过计算可得n=Vmax /2。
公卫百科
参数意义
①当ν=Vmax/2时,Km=[S]。因此,Km等于酶促反应速度达最大值一半时的底物浓度。
②当k-1>>k+2时,Km=k-1/k+1=Ks。因此,Km可以反映酶与底物亲和力的大小,即Km值越小,则酶与底物的亲和力越大;反之,则越小。
③Km可用于判断反应级数:当[S]<0.01Km时,ν=(Vmax/Km)[S],反应为一级反应,即反应速度与底物浓度成正比;当[S]>100Km时,ν=Vmax,反应为零级反应,即反应速度与底物浓度无关;当0.01Km<[S]<100Km时,反应处于零级反应和一级反应之间,为混合级反应。
④Km是酶的特征性常数:在一定条件下,某种酶的Km值是恒定的,因而可以通过测定不同酶(特别是一组同工酶)的Km值,来判断是否为不同的酶。
⑤Km可用来判断酶的最适底物:当酶有几种不同的底物存在时,Km值最小者,为该酶的最适底物。
⑥Km可用来确定酶活性测定时所需的底物浓度:当[S]=10Km时,ν=91%Vmax,为最合适的测定酶活性所需的底物浓度。
⑦Vmax可用于酶的转换数的计算:当酶的总浓度和最大速度已知时,可计算出酶的转换数,即单位时间内每个酶分子催化底物转变为产物的分子数。
⑷Km和Vmax的测定:主要采用Lineweaver-Burk双倒数作图法和Hanes作图法。
公卫论坛
双倒数图
酶促反应中的Km和Vmax值有几种测量方法。固定反应中的酶浓度,然后分析几种不同底物浓度下的起始速度,就可获得Km和Vmax值。但直接从起始速度对底物浓度的图中确定Km或Vmax值是很困难的,因为曲线接近Vmax时是个渐进过程。所以通常都是利用米氏方程的转换形式求出Km和Vmax值。常用的米氏方程转换形式是Lineweaver-Burk方程,也称为双倒数方程。
使1/ v 对1/[S]作图,可以获得一条直线。从直线与x轴的截距可以得到1/Km的绝对值;而1/Vmax是直线与y轴的截距。双倒数作图直观、容易理解,为酶抑制研究提供了易于识别的图形。
缺点:底物浓度低时,坐标点集中于坐标左下方,使得误差增大,往往偏离直线,Vm、Km无法精确定出。
解决方法:底物浓度配成1/[S]的浓度级差,而不是[S]的浓度极差,使点距离平均,再以最小二乘法线性回归分析。
公卫考场
抑制作用
竞争性抑制
Km值增大,Vmax值不变
非竞争性抑
Km值不变,Vmax值变小
反竞争性抑制
Km值变小,Vmax值变小,但Vmax/Km值不变
公卫家园 附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。