False discovery rate
False Discovery Rate (FDR) is a new approach to the multiple comparisons problem. Instead of controlling the chance of any false positives (as Bonferroni or random field methods do), FDR controls the expected proportion of false positives among suprathreshold voxels. A FDR threshold is determined from the observed p-value distribution, and hence is adaptive to the amount of signal in your data.
FDR is more sensitive than traditional methods simply because it is using a more lenient metric for false positives. However, if there is truly no signal anywhere in the brain, a FDR-controlling method has the same control as standard methods. That is, if the null hypothesis is true everywhere, a FDR procedure will control the chance of a false positive anywhere in the brain at the specified level. (In technical terms, FDR methods have weak control of Familywise Type I error; for more on the standard Familywise approach
FDR is more sensitive than traditional methods simply because it is using a more lenient metric for false positives. However, if there is truly no signal anywhere in the brain, a FDR-controlling method has the same control as standard methods. That is, if the null hypothesis is true everywhere, a FDR procedure will control the chance of a false positive anywhere in the brain at the specified level. (In technical terms, FDR methods have weak control of Familywise Type I error; for more on the standard Familywise approach