Modelling Financial Time Series with S-PLUS
References 1
1 S and S-PLUS 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
公卫论坛
1.2 S Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Assignment . . . . . . . . . . . . . . . . . . . . . . . 4
公卫家园
1.2.2 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . 8
公卫考场
1.3 Modeling Functions in S+FinMetrics . . . . . . . . . . . . 10
1.3.1 Formula Specification . . . . . . . . . . . . . . . . . 10
公卫百科
1.3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 S-PLUS Resources . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Time Series Specification, Manipulation and Visualization
in S-PLUS 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 公卫百科
2.2 The Specification of "timeSeries" Objects in S-PLUS . . . 15
2.2.1 BasicManipulations . . . . . . . . . . . . . . . . . . 18 公卫百科
2.2.2 S-PLUS "timeDate" Objects . . . . . . . . . . . . . . 19
2.2.3 Creating Common "timeDate" Sequences . . . . . . 24
2.2.4 Miscellaneous Time and Date Functions . . . . . . . 28
2.2.5 Creating "timeSeries" Objects . . . . . . . . . . . 29 公卫百科
2.2.6 Aggregating and Disaggregating Time Series . . . . 30
2.2.7 Merging Time Series . . . . . . . . . . . . . . . . . . 38
公卫人
2.2.8 Dealing with Missing Values Using the S+FinMetrics
Function interpNA . . . . . . . . . . . . . . . . . . . 39
公卫论坛
2.3 Time Series Manipulation in S-PLUS . . . . . . . . . . . . . 40
2.3.1 Creating Lags and Differences . . . . . . . . . . . . . 40
公卫百科
2.3.2 Return Definitions . . . . . . . . . . . . . . . . . . . 43
2.3.3 Computing Asset Returns Using the S+FinMetrics
Function getReturns . . . . . . . . . . . . . . . . . 46
2.4 Visualizing Time Series in S-PLUS . . . . . . . . . . . . . . 48 公卫论坛
2.4.1 Plotting "timeSeries" Using the S-PLUS Generic
plot Function . . . . . . . . . . . . . . . . . . . . . 48 公卫家园
2.4.2 Plotting "timeSeries" Using the S+FinMetrics Trellis
Plotting Functions . . . . . . . . . . . . . . . . . 51
References 55
3 Time Series Concepts 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 公卫百科
3.2 Univariate Time Series . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 Stationary and Ergodic Time Series . . . . . . . . . 58
公卫百科
3.2.2 Linear Processes and ARMA Models . . . . . . . . . 64
3.2.3 Autoregressive Models . . . . . . . . . . . . . . . . . 66 公卫人
3.2.4 Moving Average Models . . . . . . . . . . . . . . . . 70
3.2.5 ARMA(p,q) Models . . . . . . . . . . . . . . . . . . 74 公卫家园
3.2.6 Estimation of ARMA Models and Forecasting . . . . 76
3.2.7 Martingales and Martingale Difference Sequences . . 83
3.2.8 Long-run Variance . . . . . . . . . . . . . . . . . . . 85
公卫家园
3.3 Univariate Nonstationary Time Series . . . . . . . . . . . . 88
3.4 LongMemory Time Series . . . . . . . . . . . . . . . . . . . 92
公卫百科
3.5 Multivariate Time Series . . . . . . . . . . . . . . . . . . . . 95
3.5.1 Stationary and Ergodic Multivariate Time Series . . 95 公卫论坛
3.5.2 MultivariateWold Representation . . . . . . . . . . 100
3.5.3 Long Run Variance . . . . . . . . . . . . . . . . . . . 101 公卫人
References 105
4 Unit Root Tests 107
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
公卫论坛
4.2 Testing for Nonstationarity and Stationarity . . . . . . . . . 108
4.3 Autoregressive Unit Root Tests . . . . . . . . . . . . . . . . 109
公卫论坛
4.3.1 Simulating the DF and Normalized Bias Distributions 111
4.3.2 Trend Cases . . . . . . . . . . . . . . . . . . . . . . . 113 公卫百科
4.3.3 Dickey-Fuller Unit Root Tests . . . . . . . . . . . . . 116
4.3.4 Phillips-Perron Unit Root Tests . . . . . . . . . . . . 122
公卫考场
4.3.5 Some Problems with Unit Root Tests . . . . . . . . 124
4.4 Stationarity Tests . . . . . . . . . . . . . . . . . . . . . . . . 125 公卫人
4.4.1 Simulating the KPSS Distributions . . . . . . . . . . 126
4.4.2 Testing for Stationarity Using the S+FinMetrics Function
stationaryTest . . . . . . . . . . . . . . . . . 127
公卫家园
References 129
5 Modeling Extreme Values 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 公卫百科
5.2 Modeling Maxima and Worst Cases . . . . . . . . . . . . . . 132
5.2.1 The Fisher-Tippet Theorem and the Generalized Extreme
Value Distribution . . . . . . . . . . . . . . . 133
5.2.2 Estimation of the GEV Distribution . . . . . . . . . 137
公卫人
5.2.3 Return Level . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Modeling Extremes Over High Thresholds . . . . . . . . . . 146 公卫百科
5.3.1 The Limiting Distribution of Extremes Over High
Thresholds and the Generalized Pareto Distribution 148
5.3.2 Estimating the GPD byMaximumLikelihood . . . . 154 公卫人
5.3.3 Estimating the Tails of the Loss Distribution . . . . 154
5.3.4 RiskMeasures . . . . . . . . . . . . . . . . . . . . . 158
5.4 Hill's Non-parametric Estimator of Tail Index . . . . . . . . 162
5.4.1 Hill Tail and Quantile Estimation. . . . . . . . . . . 163
References 167
6 Time Series Regression Modeling 169
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.2 Time Series RegressionModel . . . . . . . . . . . . . . . . . 170
6.2.1 Least Squares Estimation . . . . . . . . . . . . . . . 171
6.2.2 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . 171
6.2.3 Hypothesis Testing . . . . . . . . . . . . . . . . . . . 172
6.2.4 Residual Diagnostics . . . . . . . . . . . . . . . . . . 173
6.3 Time Series Regression Using the S+FinMetrics Function OLS173
6.4 Dynamic Regression . . . . . . . . . . . . . . . . . . . . . . 188
6.4.1 Distributed Lags and Polynomial Distributed Lags . 192 公卫家园
6.4.2 Polynomial Distributed LagModels . . . . . . . . . 194
6.5 Heteroskedasticity and Autocorrelation Consistent Covariance Matrix
Estimation . . . . . . . . . . . . . . . . . . . . 196
公卫论坛
6.5.1 The Eicker-White Heteroskedasticity Consistent (HC)
CovarianceMatrix Estimate . . . . . . . . . . . . . . 196
6.5.2 Testing for Heteroskedasticity . . . . . . . . . . . . . 198
公卫家园
6.5.3 The Newey-West Heteroskedasticity and Autocorrelation
Consistent (HAC) Covariance Matrix Estimate 201
6.6 Recursive Least Squares Estimation . . . . . . . . . . . . . 205
6.6.1 CUSUM and CUSUMSQ Tests for Parameter Stability205
6.6.2 Computing Recursive Least Squares Estimates Using
the S+FinMetrics Function RLS . . . . . . . . . . . 206 公卫论坛
References 211
7 Univariate GARCH Modeling 213
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
公卫百科
7.2 The Basic ARCHModel . . . . . . . . . . . . . . . . . . . . 214
7.2.1 Testing for ARCH Effects . . . . . . . . . . . . . . . 218 公卫家园
7.3 The GARCH Model and Its Properties . . . . . . . . . . . . 219
7.3.1 ARMA Representation of GARCH Model . . . . . . 220
公卫考场
7.3.2 GARCHModel and Stylized Facts . . . . . . . . . . 220
7.4 GARCH Modeling Using S+FinMetrics . . . . . . . . . . . 222 公卫论坛
7.4.1 GARCH Model Estimation . . . . . . . . . . . . . . 222
7.4.2 GARCH Model Diagnostics . . . . . . . . . . . . . . 225
7.5 GARCHModel Extensions . . . . . . . . . . . . . . . . . . 230
7.5.1 Asymmetric Leverage Effects and News Impact . . . 231 公卫家园
7.5.2 Two ComponentsModel . . . . . . . . . . . . . . . . 237
7.5.3 GARCH-in-the-MeanModel . . . . . . . . . . . . . . 240 公卫百科
7.5.4 ARMA Terms and Exogenous Variables in ConditionalMean
Equation . . . . . . . . . . . . . . . . . 242
7.5.5 Exogenous Explanatory Variables in the Conditional
Variance Equation . . . . . . . . . . . . . . . . . . . 245
7.5.6 Non-Gaussian Error Distributions . . . . . . . . . . 246
公卫人
7.6 GARCH Model Selection and Comparison . . . . . . . . . . 249
7.6.1 Constrained GARCH Estimation . . . . . . . . . . . 251
7.7 GARCH Model Prediction . . . . . . . . . . . . . . . . . . . 251
7.8 GARCH Model Simulation . . . . . . . . . . . . . . . . . . 254 公卫家园
7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
References 259
公卫人
8 Long Memory Time Series Modeling 263
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 公卫论坛
8.2 LongMemory Time Series . . . . . . . . . . . . . . . . . . . 264
8.3 Statistical Tests for LongMemory . . . . . . . . . . . . . . 268
8.3.1 R/S Statistic . . . . . . . . . . . . . . . . . . . . . . 268
8.3.2 GPH Test . . . . . . . . . . . . . . . . . . . . . . . . 270
8.4 Estimation of LongMemory Parameter . . . . . . . . . . . 272
8.4.1 R/S Analysis . . . . . . . . . . . . . . . . . . . . . . 272 公卫家园
8.4.2 Periodogram Method . . . . . . . . . . . . . . . . . . 274
8.4.3 Whittle's Method . . . . . . . . . . . . . . . . . . . . 275
公卫人
8.5 Estimation of FARIMA and SEMIFAR Models . . . . . . . 276
8.5.1 Fractional ARIMAModels . . . . . . . . . . . . . . 277
公卫论坛
8.5.2 SEMIFAR Model . . . . . . . . . . . . . . . . . . . . 285
8.6 Long Memory GARCH Models . . . . . . . . . . . . . . . . 288
公卫人
8.6.1 FIGARCH and FIEGARCHModels . . . . . . . . . 288
8.6.2 Estimation of Long Memory GARCHModels . . . . 290
8.6.3 Custom Estimation of Long Memory GARCH Models 293 公卫人
8.7 Prediction fromLongMemoryModels . . . . . . . . . . . . 296
8.7.1 Prediction fromFARIMA/SEMIFARModels . . . . 297
8.7.2 Prediction from FIGARCH/FIEGARCH Models . . 300
公卫人
References 303
9 Rolling Analysis of Time Series 307
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 307 公卫人
9.2 Rolling Descriptive Statistics . . . . . . . . . . . . . . . . . 308
9.2.1 Univariate Statistics . . . . . . . . . . . . . . . . . . 308 公卫百科
9.2.2 Bivariate Statistics . . . . . . . . . . . . . . . . . . . 315
9.2.3 Exponentially Weighted Moving Averages . . . . . . 317 公卫家园
9.2.4 Moving Average Methods for Irregularly Spaced High
Frequency Data . . . . . . . . . . . . . . . . . . . . . 321
公卫家园
9.2.5 Rolling Analysis of Miscellaneous Functions . . . . . 328
9.3 Technical Analysis Indicators . . . . . . . . . . . . . . . . . 331
9.3.1 Price Indicators . . . . . . . . . . . . . . . . . . . . . 332
9.3.2 Momentum Indicators and Oscillators . . . . . . . . 332 公卫人
9.3.3 Volatility Indicators . . . . . . . . . . . . . . . . . . 334
9.3.4 Volume Indicators . . . . . . . . . . . . . . . . . . . 335 公卫家园
9.4 Rolling Regression . . . . . . . . . . . . . . . . . . . . . . . 336
9.4.1 Estimating Rolling Regressions Using the S+FinMetrics 公卫百科
Function rollOLS . . . . . . . . . . . . . . . . . . . 337
9.4.2 Rolling Predictions and Backtesting . . . . . . . . . 343 公卫人
9.5 Rolling Analysis of General Models Using the S+FinMetrics
Function roll . . . . . . . . . . . . . . . . . . . . . . . . . . 352
References 355
10 Systems of Regression Equations 357
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
10.2 Systems of Regression Equations . . . . . . . . . . . . . . . 358
10.3 Linear Seemingly Unrelated Regressions . . . . . . . . . . . 360
公卫考场
10.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . 360
10.3.2 Analysis of SUR Models with the S+FinMetrics Function
SUR . . . . . . . . . . . . . . . . . . . . . . . . . 363
10.4 Nonlinear Seemingly Unrelated RegressionModels . . . . . 370 公卫考场
10.4.1 Analysis of Nonlinear SUR Models with the S+FinMetrics
Function NLSUR . . . . . . . . . . . . . . . . . . . . . 371
References 379
11 Vector AutoregressiveModels forMultivariate Time Series 381
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
11.2 The Stationary Vector AutoregressionModel . . . . . . . . 382
11.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . 384
公卫人
11.2.2 Inference on Coefficients . . . . . . . . . . . . . . . . 386
11.2.3 Lag Length Selection . . . . . . . . . . . . . . . . . . 386
公卫人
11.2.4 Estimating VAR Models Using the S+FinMetrics
Function VAR . . . . . . . . . . . . . . . . . . . . . . 386 公卫人
11.3 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
11.3.1 Traditional Forecasting Algorithm . . . . . . . . . . 394 公卫论坛
11.3.2 Simulation-Based Forecasting . . . . . . . . . . . . . 398
11.4 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . 402
公卫人
11.4.1 Granger Causality . . . . . . . . . . . . . . . . . . . 403
11.4.2 Impulse Response Functions . . . . . . . . . . . . . . 405
公卫人
11.4.3 Forecast Error Variance Decompositions . . . . . . . 409
11.5 An Extended Example . . . . . . . . . . . . . . . . . . . . . 413 公卫百科
11.6 Bayesian Vector Autoregression . . . . . . . . . . . . . . . . 420
11.6.1 An Example of a Bayesian VARModel . . . . . . . 420
11.6.2 Conditional Forecasts . . . . . . . . . . . . . . . . . 423
References 425
12 Cointegration 427
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 公卫考场
12.2 Spurious Regression and Cointegration . . . . . . . . . . . . 428
12.2.1 Spurious Regression . . . . . . . . . . . . . . . . . . 428 公卫家园
12.2.2 Cointegration . . . . . . . . . . . . . . . . . . . . . . 431
12.2.3 Cointegration and Common Trends . . . . . . . . . . 433 公卫论坛
12.2.4 Simulating Cointegrated Systems . . . . . . . . . . . 433
12.2.5 Cointegration and Error CorrectionModels . . . . . 437 公卫人
12.3 Residual-Based Tests for Cointegration . . . . . . . . . . . . 440
12.3.1 Testing for Cointegration when the Cointegrating Vector
is Pre-specified . . . . . . . . . . . . . . . . . . . 440
12.3.2 Testing for Cointegration when the Cointegrating Vector 公卫考场
is Estimated . . . . . . . . . . . . . . . . . . . . 443
12.4 Regression-Based Estimates of Cointegrating Vectors and
Error CorrectionModels . . . . . . . . . . . . . . . . . . . . 446
12.4.1 Least Square Estimator . . . . . . . . . . . . . . . . 446 公卫人
12.4.2 Stock and Watson's Efficient Lead/Lag Estimator . 447
12.4.3 Estimating Error Correction Models by Least Squares 450
12.5 VARModels and Cointegration . . . . . . . . . . . . . . . . 451
12.5.1 The Cointegrated VAR . . . . . . . . . . . . . . . . 452
12.5.2 Johansen's Methodology for Modeling Cointegration 454
公卫家园
12.5.3 Specification of Deterministic Terms . . . . . . . . . 455
12.5.4 Likelihood Ratio Tests for the Number of Cointegrating
Vectors . . . . . . . . . . . . . . . . . . . . . . . 457
公卫论坛
12.5.5 Testing for the Number of Cointegrating Vectors Using
the S+FinMetrics Function coint . . . . . . . . 459
12.5.6 Maximum Likelihood Estimation of the Cointegrated 公卫家园
VECM. . . . . . . . . . . . . . . . . . . . . . . . . . 460
12.5.7 Maximum Likelihood Estimation of the Cointegrated
VECM Using the S+FinMetrics Function VECM . . . 462
12.5.8 Forecasting fromthe VECM . . . . . . . . . . . . . 465 公卫家园
12.6 Appendix: Maximum Likelihood Estimation of a Cointegrated
VECM . . . . . . . . . . . . . . . . . . . . . . . . . . 467 公卫百科
References 471
13 Multivariate GARCH Modeling 473
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
13.2 ExponentiallyWeighted Covariance Estimate . . . . . . . . 474
13.3 Diagonal VEC Model . . . . . . . . . . . . . . . . . . . . . . 478
13.4 Multivariate GARCHModeling in FinMetrics . . . . . . . . 479
13.4.1 Multivariate GARCHModel Estimation . . . . . . . 479 公卫人
13.4.2 Multivariate GARCHModel Diagnostics . . . . . . . 481
13.5 Multivariate GARCHModel Extensions . . . . . . . . . . . 488
公卫百科
13.5.1 Matrix-Diagonal Models . . . . . . . . . . . . . . . . 488
13.5.2 BEKKModels . . . . . . . . . . . . . . . . . . . . . 489 公卫论坛
13.5.3 Univariate GARCH-basedModels . . . . . . . . . . 492
13.5.4 ARMA Terms and Exogenous Variables . . . . . . . 496
13.5.5 Multivariate Conditional t-Distribution . . . . . . . 499
13.6 Multivariate GARCH Prediction . . . . . . . . . . . . . . . 501 公卫百科
13.7 CustomEstimation of GARCHModels . . . . . . . . . . . . 504
13.7.1 GARCHModel Objects . . . . . . . . . . . . . . . . 504 公卫百科
13.7.2 Revision of GARCHModel Estimation . . . . . . . . 506
13.8 Multivariate GARCHModel Simulation . . . . . . . . . . . 507
公卫考场
References 511
14 State Space Models 513
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 513 公卫百科
14.2 State Space Representation . . . . . . . . . . . . . . . . . . 514
14.2.1 Initial Conditions . . . . . . . . . . . . . . . . . . . . 515 公卫人
14.2.2 State Space Representation in S+FinMetrics/SsfPack515
14.2.3 Missing Values . . . . . . . . . . . . . . . . . . . . . 521 公卫论坛
14.2.4 S+FinMetrics/SsfPack Functions for Specifying the
State Space Form for Some Common Time Series
Models . . . . . . . . . . . . . . . . . . . . . . . . . 522 公卫论坛
14.2.5 Simulating Observations from the State Space Model 534
14.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 536 公卫考场
14.3.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . 536
14.3.2 Kalman Smoother . . . . . . . . . . . . . . . . . . . 537
公卫论坛
14.3.3 Smoothed State and Response Estimates . . . . . . 538
14.3.4 Smoothed Disturbance Estimates . . . . . . . . . . . 538 公卫百科
14.3.5 Forecasting . . . . . . . . . . . . . . . . . . . . . . . 538
14.3.6 S+FinMetrics/SsfPack Implementation of State Space 公卫考场
Modeling Algorithms . . . . . . . . . . . . . . . . . . 538
14.4 Estimation of State SpaceModels . . . . . . . . . . . . . . . 547 公卫考场
14.4.1 Prediction Error Decomposition of Log-Likelihood . 547
14.4.2 Fitting State Space Models Using the S+FinMetrics/SsfPack
Function SsfFit . . . . . . . . . . . . . . . . . . . . 548
公卫百科
14.5 Simulation Smoothing . . . . . . . . . . . . . . . . . . . . . 553
References 557
15 Factor Models for Asset Returns 559
公卫人
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 559
15.2 Factor Model Specification . . . . . . . . . . . . . . . . . . . 560 公卫家园
15.3 Macroeconomic FactorModels for Returns . . . . . . . . . . 561
15.3.1 Sharpe's Single IndexModel . . . . . . . . . . . . . 562
15.3.2 The GeneralMultifactorModel . . . . . . . . . . . . 567
15.4 Fundamental Factor Model . . . . . . . . . . . . . . . . . . 570 公卫家园
15.4.1 BARRA-type Single FactorModel . . . . . . . . . . 571
15.4.2 BARRA-type Industry FactorModel . . . . . . . . . 572
公卫考场
15.5 Statistical FactorModels for Returns . . . . . . . . . . . . . 580
15.5.1 Factor Analysis . . . . . . . . . . . . . . . . . . . . . 580 公卫家园
15.5.2 Principal Components . . . . . . . . . . . . . . . . . 587
15.5.3 Asymptotic Principal Components . . . . . . . . . . 595
15.5.4 Determining the Number of Factors . . . . . . . . . 600
References 605
16 Term Structure of Interest Rates 607 公卫论坛
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 607
16.2 Discount, Spot and Forward Rates . . . . . . . . . . . . . . 608 公卫家园
16.2.1 Definitions and Rate Conversion . . . . . . . . . . . 608
16.2.2 Rate Conversion in S+FinMetrics . . . . . . . . . . 609 公卫论坛
16.3 Quadratic and Cubic Spline Interpolation . . . . . . . . . . 610
16.4 Smoothing Spline Interpolation . . . . . . . . . . . . . . . . 614 公卫家园
16.5 Nelson-Siegel Function . . . . . . . . . . . . . . . . . . . . . 618
16.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
公卫家园
References 625
17 Robust Change Detection 627
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
公卫百科
17.2 REGARIMAModels . . . . . . . . . . . . . . . . . . . . . . 628
17.3 Robust Fitting of REGARIMAModels . . . . . . . . . . . . 629 公卫论坛
17.4 Prediction Using REGARIMAModels . . . . . . . . . . . . 634
17.5 Controlling Robust Fitting of REGARIMAModels . . . . . 635
17.5.1 Adding Seasonal Effects . . . . . . . . . . . . . . . . 635
17.5.2 Controlling Outlier Detection . . . . . . . . . . . . . 637 公卫家园
17.5.3 Iterating the Procedure . . . . . . . . . . . . . . . . 639
17.6 Algorithms of Filtered τ-Estimation . . . . . . . . . . . . . 641
17.6.1 ClassicalMaximumLikelihood Estimates . . . . . . 642
17.6.2 Filtered τ-Estimates . . . . . . . . . . . . . . . . . . 643 公卫论坛
References 645
Index 647 公卫论坛
附件列表
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。
如果您认为本词条还有待完善,请 编辑
上一篇 R 下一篇 河南省洛阳市卫生监督中心