可积函数
可积函数定义
如果f(x)在[a,b]上的定积分存在,我们就说f(x)在[a,b]上可积。即f(x)是[a,b]上的可积函数。
公卫百科
函数可积的充分条件
定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2设f(x)在区间[a,b]上有界,且只有有限个第一类间断点,则f(x)在[a,b]上可积。
定理3设f(x)在区间[a,b]上单调有界,则f(x)在[a,b]上可积。
公卫家园
勒贝格可积性
数学上,可积函数是存在积分的函数。除非特别指明,一般积分是指勒贝格积分。否则,称函数为"黎曼可积"(也即黎曼积分存在),或者"Henstock-Kurzweil可积",等等。
给定集合X及其上的σ-代数σ和σ上的一个测度,实值函数f:X→ R是可积的如果正部f和负部f都是可测函数并且其勒贝格积分
有限。令
公卫考场
公卫考场
当且仅当|f(x)|是可积的,所以"可积"和"绝对可积"在勒贝格意义下等价。)术语p-可和也是一样的意义,常用于f是一个序列,而μ是离散测度的情况下。
这些函数组成的L空间是泛函分析研究中的主要对象之一。
公卫论坛 附件列表
您所在的用户组无法下载或查看附件
词条内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。